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Maxwell distribution is recognized as a life time model in Statistics literature. In
this paper, we develop transmuted Maxwell distribution using the quadratic rank
transmutation map studied by Shaw and Buckley (2009). We discuss various
mathematical properties of this distribution including some reliability measures. We
obtain Maximum likelihood and Bayes estimators of parameters and provide
confidence intervals and Bayesian credible intervals for the same. We perform
simulation study and analyse a real data set for numerical illustrations.
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Introduction

Maxwell distribution, as a lifetime model, has been extensively studied in
literature. Tyagi and Bhattacharya (1989a) considered minimum variance unbiased
estimators of mean life and reliability function whereas Tyagi and Bhattacharya
(1989b) discussed the Bayesian estimation for this distribution. Bekker and Roux
(2005) derived empirical Bayes estimators of the rats parameter and hazard function.
Krishna and Malik (2012) obtained maximum likelihood (ML) and Bayes estimators of
the parameter and reliability function under progressive censoring scheme. Tomer and
Panwar (2015) considered ML and Bayesian estimation of the parameter of this
distribution under type-I progressive hybrid censoring schemes.

The quadratic rank transmutation map [see Shaw and Buckley (2009)] is one of
the several approaches that are advocated in literature to generalize any distribution.
Aryal and Tsokos (2009) studied the transmuted extreme value distribution and
suggested its applications in the areas like climatology and hydrology. Merovci (2016)
and Aryal and Tsokos (2011), respectively discussed the properties and parameter
estimation of transmuted Rayleigh and Weibull distributions. Khan and King (2013)
considered three parameter kumaraswamy distribution and obtianed estimators of
various parametric functions. In this paper, we present transmuted Maxwell(TMW)
distribution using the quadratic rank transmutation map.
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A random variable X is said to have transmuted distribution if its cumulative
distribution function (cdf) is given by

F(x) = (1+1D)G(x) —AG%*(x), |1 <1 (1)

where G(x) is the cdf of the base distribution. We observe that for A = 0, we get the cdf
of base distribution.

The rest of paper is organised as follows. In Section 2, we define the TMW
distribution and obtain its mgf. In Section 3, we discuss various properties of TMW
along with its reliability and hazard rate functions. In Section 4, we obtain the ML
estimate and asymptotic confidence intervals(4Cls) for parameters. We provide
procedures to evaluate Bayes estimators of parameters, Bayesian credible interval and
highest posterior density intervals in Section 5. We perform simulation study in Section

6 and finally analyse a real data in Section 7.
2. Transmuted Maxwell distribution

It a random variable X follows Maxwell distribution with scale parameter 6 then
its pdfis given by

2
N B
g(x,H)—\/EG%xe 6; 0<x<ow, 6>0, 2)
and the cdf of X is given by
2 x?
G(x;0) =1~ (%) 3)
Now using (1) and (3), we get the cdf of TMW as follows
2 x? 22 x?
F(x,0,1) = (1 -5 (7)> <1 +30 (F)) (4)
Hence the pdf of TMW with parameters 6 and 1 comes out to be
Fon) =L e 5 (1- 2+ 21, %) (5)
) ) \/E % —\/E 2 9 .

Some possible shapes of pdf of TMW for different values of parameters 6 and A
are shown in Figure 1.
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Figurel: The pdf's of various transmuted Maxwell distribution
2.1 Moment Generating Function

If X follows, TMW astin bolt (5), then its the moment generating function(MGF)
is given by

My (t) = E(e™)
= fwexp(tx)f(x, 0,)dx
0
_ f(;” (1+t +(“‘) ) f(x,8,1)dx

2, SE(XY), (6)

For on integer r, we have

E(X") = ~/E9 S xtze <1—/’l+\/_1"3(6)>dx

[(1 A)f t2 ‘tdt+

r+1
t 2 e 'Is(t dt],
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which on using a result from Gradshteyn and Ryzhik (1980), pp 663,§6.455), comes
out to be

E(XT) —

347 42 F(3+-) T 5+r 1
(1 -pr(Z) + ﬁ(3+r)23+_ R (13+5 2)‘ (7
2

where ,F; is Gauss Hypergeometric function.

Using (6) and (7), we get the mgf of TMW distribution as follows.

y) F(3 +%)
e

23+E

My (£) = \leoﬂw[m r(E)+ izﬂ(L3+§%¥%ﬂ,@>

In perticular, we have

7
E(X) = 2\/%[1—/1+\/%¥ N (1,%;3;%)]
2

and
2y = 2001 _ 5) 4 34 7.1
Bty = 7| -1 () + 57 o (145:5)]
3. Reliability Analysis
The reliability function of a TMW, at any specified time t, is
R)=PX>1t)

-G+ 2 ) 0

2

The hazard rate function for this distribution is

f)

h(t) = RO
y
_2t? eXp(—%) 1_“3_{%(?)

IEECIEEGl (10)
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In Figure 2, the hazard function (10) is ploted for different Values of 8 and A.
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Figure 2: The hazard function of TMW for various parameteric values.

3.1 Mean residual life

The mean residual life function (MRL) at a given time t measures the expected
remaining lifetime of an individual of age t. It is denoted by m(x). For a continuous
distribution with pdf f(x) and cdf F(x), the mean residual life function is defined as

1 o
mx)=EX —x|X >x) = 1——F(X)f [1—F(t)]dt.

For TMW, the mean residual life function comes out to be

m(x) = B 1 g frs %) <1 1+ j—;rg (%)) dt.

24 x
FE ?) [1—11—\/—7?1—%(?
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3.2 Order Statistics
Let X; <X, <...< X, denote the order statistics of a random sample from a

continuous population with cdf Fy (x) and pdf fy (x), then the pdf of /* order statistic X §
is given by

fiy (@) = o (D E () T L = ()", = 1,.om(1D)

The pdf of the jt* order statistic when X follows TMW is given by
) n! 4 x? _x; L2+ 4/1F <x2> " 2 . <x2>
(x) == ———e - — — -— —
TG = D= DIV 6 Vi 3\ 8 N A

(142, (?))]H (Fr@)(1-2+2r, (%))]n_j- (12)

In particular, the pdf of the largest order statistic X,, comes out to be

fo () =X (122
X)=n—=—e —
Xn \/%9%

()= F(5)) (1 B (’9)]”_1

and, the pdf of the smallest order statistic X; be comes

fo ) =X e (122
X)=n—=—e —
Xl '\/EH%

o)) [ (o)

3.3 Stochastic orderings

Stochastic ordering of positive continuous random variables is an important tool
to judge their comparative behavior. There are different types of stochastic orderings
which are useful in ordering random variables. Here we consider four different
stochastic orders, namely, stochastic order, the hazard rate, the mean residual life, and
the likelihood ratio order for two independent 7MW random variables under a restricted
parameter space.
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A random variable X is said to be smaller than a random variable Y in the
1. stochastic(st) order (X <, Y) if Fy(x) < Fy(x) for all x;
hazard rate(hr) order (X <, Y) if Fy,(x)/Fx(x) is increasing in x;
mean residual life(mrl) order (X <,,,; Y) if my(x) < my(x) for all x;

likelihood ratio(Ir) order (X <. Y) if fy(x)/fx(x) is increasing in x.

v

The hazard rate ordering is also known as uniform stochastic ordering in the
literature.

The TMW distribution is ordered with respect to the strongest i.e. likelihood ratio
ordering as shown in the following theorem.

Theorem 1. If X and Y are two independent transmuted Maxwell distributions
then, then all four stochastic orderings exist.

Proof. Let X~TM (04, A,) and Y~TM (6, A,). The log-likelihood ratio of Y to X is

fy(x) 3 (91) 6, — 0, 47,  [x?
=—log|— +x2< )+lo 1-2,+—=T3

fx(x) 2 g 6, 616, g 2 Vi 2 92

log [1 -4+ f//l_ll"a (91)]

and the derivative of log-likelihood ratio with respect to x is

—x?2
d x 6, — 61\ 81, x? €Xp (—)
—l fr(x) Zx(#>——2—3 0, +
fX(x) 616, Vi 02 412 X2

2 1 - 12 \/— F3 (92)

8_)‘1x_ exp(%) (13)

\/E % 421 x2

61 1—11+ﬁrg(a)
. Consider 4; = 1, = A. The derivative of log-likelihood ratio with respect to x is

negative for 6; > 0, and positive for 6; < 6,. It means that X <;,. ¥V for
/11 =AZ =/1a1’1d92 > 61.

. When 6; = 6, = 6. The derivative of log-likelihood ratio with respect to x is
negative for x > 1, > A, and positive for x > A; > A,. It means that X <;, Y for
x>/11>/123nd91=92=9.

Therefour, we conclude that X <;. Y under parametanic space {1; = 1, =

Aand 6,>6;} and {x >A;, > 1, and 6; = 0, = 0}.Shaked and Shanthikumar
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(1994) have shown that the following relation exists among four stochastic orderings of
distributions listed earlier:
XserZ>XSth:XSmrlY
U
X<gY

Hence using above expression and the result of likelihood ratio ordering, we can
conclude that the likelihood ratio ordering, the usual stochastic, the hazard rate and the
mean residual life ordering exist for the transmuted Maxwell distributions under the
restricted parameter space.

4. Parameter Estimation

Let x4, X5,...,x, (denoted by x henceforth) be a random sample of size n from
TMW distribution with dendity function f(t,8,1) given in (5). Then the likelihood
function of (8, 1), in the light of given observations x, comes out to be

4\" =" DL .
L(6,4;x) = (ﬁ) 67 T, xPexp (—2=20) [T, <1 — A+ 5T (%)).(14)
Log likelihood function is

n 2
logL(6,4; x) = nlog (\%) +3¥0, log(x?) — 37nlog9 - ilexi + it log (1 -1+

() a9

In order to obtain MLEs of parameters, we differentiate (15) w.r.t 8 and A and
get likelihood equations. Since, the log-likelihood function contains incomplete gamma
function, we use the formula of Gradshteyn & Ryzhik (1980) (p. 18, $ 0.410), to derive
likelihood equation for 8. The likelihood equation for 6 is

-3n  SLix? s Y6\ _
26 T g T i (zp(xi,e,A)ﬂ—;L)_O' (16)

where
A (v

and ¥’ (.) is the first derivative of (.) w.r.t. @ given by

, 49 —y?
P (,0,4) =—5—y’exp )

02 n
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Now, defferentiating (15) w.r.t. A, we get the likelihood equation for A given by

n oA _
=1 0@, 0,0+1-1) 0. (17)

The likelihood equations (16) and (17) are transcendental equations in 8 and 4,
respectively. We use iterative numerical method to solve these equations and obtain the
MLESs of parameters.

4.1 Asymptotic Confidence Intervals

In previous section, we could not obtain expressions for MLEs of parameters in
closed form and hence the exact distributions of the same can not be derived. Here, we
derive ACls for parameters by using the fact that the asymptotic distribution of MLE is
normal distribution. Here, the Fisher information matrix is given by

P d%logL —
= agor )’ T e

Since expressions for the elements of above matrix cannot be obtained in closed
form, we therefore use approximate(observed) variance-covariance matrix given by

dlogL dlogL -1

~2 ~
1(8,7) = 262 26d1 _|% Oea
’ . dlogL . dlogL 67\9 ai '
106 2% lo0)=(8.2) ’

For our problem, the second derivatives of the log-likelihood function (15), are
obtained as follows

2 _3n 3Lix | o Wb (s )
logL = 755 — 224 T, (5 @ ) ) s

062 202 (x,0,0)+1-1 (0, )+1-2
9 gL = —Lyn  (DCufDA )2
042 logl = Az &=l (w(xi,9,1)+1—l) ’ (19)
and
o? __9 _vn P (xi.6.2)
a1 09L = 5355 109L = Liz1 oz 20

where 1"(.) is the second derivative of (. ) with respect to 6, given by

Y'(y,0,2) = ;A y3exp (_Tyz) (2y* =56). (21)

02V

Using the asypmtotic normality of MLE, two sided 100(1 — a)% AClIs for 6
and A are given, respectively, by
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é i Z(g) ’0% and i i Z(a) /0'\%.

2

Where z, represents the upper pt"percentile of standard normal distribution.

5 Bayesian estimation

Here, we suppose that 8 is a random variables and the distribution of 6 can be
presented in form of a prior density 1, (6). We consider the distribution of 7, (8) to be
Inverted gamma distribution with hyper parameters (v, ) given by the pdf

—u
m,(0) x 8~ , 6 >0
wheres for A, we take a non-informative prior given by
1
T, (1) « . c>0.

Considering 8 and A independent, the joint prior density comes out to
be (0,1) o< m(0)m,(1). Now, merging the joint prior density with likelihood
function via Bayes theorem, we get the hint posterior distribution of 8 and A given by

3n 2
w(6,2]x) o 070 Fexp (=2 (u+ 1, 7)) I, (1 ~ A+ (%)). 22)

The Bayes estimator of a parameter, under squared error loss function, is its
posterior mean. Therefore, in order to obtain Bayes estimator of parameter, we need
marginal densities of 8 and 4. But, we observe that joint posterior density in (22) is not
in a closed form and therefore, the marginal densities of 6 and A can not be expressed
in closed form. We, therefore, use Gibbs Sampling method to evaluate Bayes estimates.

In order to implement Gibbs Sampler, the full conditional distribution of 8 and A
are given by

3n 2
(8] %) o 670 Fexp (<L (u + 31, 22)) I, <1 ~ A+ 5T (%)) (23)

and
41 x?
m5(216;x) Ty <1 — A+ 5T (;)) 24)

The full conditionals of 8 and A given in (23) and (24) do not follow any well
known distribution. To generate the sample observations from then full conditionls, we

use Metropolis-Hastings algorithm.
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5.1 MCMC method

We use Metropolis-Hastings algorithm with normal proposal distribution to
generate sample observation from 1, (8|x) and m,(A|x) given by equation(23) and (24)

respectively. The main steps what are to be followed are as follows.
1.  Sett =1, and take §,=0 and A,=A.

2. Generate a candidate point 8* from proposal distribution g; ~N(8,v(9)) and
generate a point # from uniform distribution U(0,1).

71 (0% |A(t-1)X )41 (0 (¢-1)16")
71 (0t—1)|Ae-1)%)q1(6*10t-1))
u< p(e(t_l), 9*) and otherwise set 6y = 0(;_1).

3. Let p(G(t_l),B*) = min{ 1}then set Oy =07 if

4, Generate a candidate point A* from proposal distributiong,~U(—1,1)and
generate a point u from uniform distribution U(0,1).

m2(A"16().% )92(Ae-1)|2")
T2 (A(t—1) [0(t)x )‘h ()1*|)1(t—1)) ’
u< p(/'l(t_l), A*) and otherwise () = At—1)-

5. Let p(/l(t_l),}t*) =min{ 1}, then set Ay =4 if

6. sett=t+1

7. Repeat steps (2) —(6), K times to get the chains 64,0,,...,0; and
A1, A, .., Ak, where K is a large number.

After the convergence of chain, we obtain K* out of K observations, say
01,0,,...,0g+ and A4, 4,,..., A+ and taking average of these values. We can obtain
Bayes estimate of 8 and A, under squared error loss function, by using

5 1 K* ~ _ 1 K*
0= F i=1 gi and A= FZi:l Ai'

5.2 Bayesian Credibleinterval

Here we previble procedure to obtain Bayesian credible intervals based on the
algorithm of Chen and Shao (1999). The precedure includes the following steps:.

(i) Let 8, <0,<605<,...,<0k and A; <A, <13 <,...,< A~ be the ordered
observations, obtained using Gibbs sampler, from the posterior distributions of 8
and A, respectively.

(i1) Then 100(1 — a)% credible intervals for 8 and A are given by

(919 Ol1-9e1) 2 () Ao-99e)

where [z] denotes the integer part of z.
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5.3. Highest Posterior Density (HPD)

(1) Here, we first obtain length of 100(1 — @)% credible interval for 8 given by

*

lje = 9(j+(1—%)1(*) — 9(1) ; ] = 1, 2, 3,...,“[( .

(i) We find the credible interval for which l]eis minimum. This interval is HPD for 6.

Similarly, we can obtain HPD for A.
6. Simulation study

For simulation study, we generate the random samples from TMW by using
acceptance-rejection method which is given as follows.

1. Generate a random variable Y from Rayleigh distribution.
2. Generate U from uniform distribution U(0, 1).

3. Set X =Y (accept) If U < %; where, c is sup,
otherwise reject, and go back to step 1 .

4.  repeate Steps 1-2, N times.

)
gy

On the basis of these generated sample observations, we evaluate ML and Bayes
estimates of parameters. For Bayesian estimation, the value of prior hyperparameters
are chosen to be v = u = 3. We repeat this process 1000 times for different sample size
and different values of parameters. Same procedure is followed in evaluation of length
and coverage probabilities (CPs) of ACIs, BCIs and HPD intervals. Table 1 consists of
average values of ML and Bayes estimates along with their mean square errors (MSEs).
In Table 2, we provide average length of ACIs, BCls and HPD intervals along with CP.
All computations are performed in R (https://www.r-project.org)software.

Table 1: Average value of ML and Bayes estimates with their MSE (in brackets()).

MLEs
6 =1.5, A=0.4 6 =2.0, A=0.6 | 6=25, 2=0.8
Sample Size | & ) ] X ] A
30 1.477 0.376 2.169 0.516 2.618 0.579
0.126)  (0.099) | (0.131)  (0.096) | (0.177)  (0.083)
50 1.513 0.413 2.082 0.552 2.547 0.685
(0.081) (0.055) (0.078) (0.036) (0.124) (0.025)
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Bayes estimates

] P i A i A
30 | 1503  0.360 2025 0531 2505  0.634
(0.001)  (0.071) (0.003)  (0.081) | (0.002)  (0.098)
1510 0384 2042 0.567 2520 0.734
50 | (0.001)  (0.046) (0.003)  (0.027) | (0.001)  (0.009)

Table 2: Average length of ACls, BCls and HPD intervals with their coverage
probability (in brackets ()).

0 =1.5, 2=0.4 6 =2.0, 2=0.6 =25, 2=0.8
Asymptotic confidence interval(ACI)
Sample 0 A 0 A 0 A
Size
30 1.480 1.720 1.174 1.115 2.200 1.364
(90.01) (96.36) (89.00)  (96.20) (0.8062)  (90.91)
50 1.235 1.387 1.662 0.805 1.269 0.630
©3.70)  O7.70) | g630) (98.70) | (87.00)  (93.20)
Bayesian credible interval(BCI)
30 0.267 0.991 0.303 0.977 0.343 0.704
(96.59) (96.0) (99.60)  (90.20) (95.22)  (88.30)
0.263 0.818 0.298 0.795 0.334 0.518
50 (95.44) (94.34) (98.70)  (96.80) (95.62)  (92.40)
Highest posterior density(HPD) interval
0.265 0.973 0.301 0.963 0.341 0.683
30 (94.31) (93.80) (99.80)  (92.10) (92.99)  (94.60)
50 0.255 0.809 0.296 0.787 0.332 0.509
©3.44)  O42D) | 98090)  (98.40) | (9467)  (97.80)

7. Real Data Analysis

Now we analyse a real data set which represents lifetimes of 23 ball bearing
Lawless (2011).
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17.88 28.92 33 41.52 42.12 45.60 484 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.4

To check whether the the distribution is suitable for this data set, K-S test is used.
The K-S distance for this data is 0.1588 and p-value is 0.6073. The curves of empirical
cdf and that of fitted cdf through TMW, are shown in Figure 3. Therefore TMW can be
considered a suitable model for data. We also obtained MLEs, Bayes estimates, ACls,
BCIs and HPD intervals of parameters for this data set. For Bayesian estimation, the
values of hypermeters are chosen tov =y = 0.

Table 3 : Estimated values for real data set

0 A
ML 5389.99 0.498
Bayes 5219.99 0.3940
ACI (2275.14, 8504.84) (-0.4372, 1)
BCI (4269.19, 6525.75) (-0.4305, 0.9908)
HPD (4233.68, 6471.03) (-0.4288, 0.9782)

< |
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Fig. 3: Empirical and fitted cdfs
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